sábado, 18 de febrero de 2017

TEMA # 11 - HERRAMIENTAS BASICAS PARA EL CONTROL DE CALIDAD 2

Diagrama de Ishikawa (o de causa-efecto)

El diagrama de causa-efecto o de Ishikawa es un método gráfico que relaciona un problema o efecto con los factores o causas que posiblemente lo generan. La importancia de este diagrama radica en que obliga a buscar las diferentes causas que afectan el problema bajo análisis y, de esta forma, se evita el error de buscar de manera directa las soluciones sin cuestionar cuáles son las verdaderas causas.

El uso del diagrama de Ishikawa (DI), con las tres herramientas que hemos visto en las secciones anteriores, ayudará a no dar por obvias las causas, sino que se trate de ver el problema desde diferentes perspectivas. Existen tres tipos básicos de diagramas de Ishikawa, los cuales dependen de cómo se buscan y se organizan las causas en la gráfica. A continuación veremos un ejemplo de cada uno.

Método de las 6 M

El método de las 6 M es el más común y consiste en agrupar las causas potenciales en seis ramas principales (6 M): métodos de trabajo, mano o mente de obra, materiales, maquinaria, medición y medio ambiente. Como se vio, estos seis elementos definen de manera global todo proceso y cada uno aporta parte de la variabilidad del producto final, por lo que es natural esperar que las causas de un problema estén relacionadas con alguna de las 6M. La pregunta básica para este tipo de construcción es: ¿qué aspecto de esta M se refleja en el  problema bajo análisis? Más adelante se da una lista de posibles aspectos para cada una de las 6M que pueden ser causas potenciales de problemas en manufactura.

ejemplo

Diagrama de Ishikawa tipo 6M. En el ejercicio se mencionan los diferentes problemas de calidad que tienen las lavadoras de una empresa. Por medio de un análisis de Pareto se encuentra que el problema principal es que la boca de la tina está ovalada, como se aprecia en el diagrama de Pareto de la parte superior. Mediante una lluvia de ideas, un equipo de mejora encuentra que las posibles causas que provocan que la boca de la tina esté ovalada son las que se muestran en el diagrama de la  y a través de un consenso llegan a la conclusión de que la causa más importante podría ser el subensamble del chasis, como se destaca en el diagrama.


Ishikawa de segundo nivel

Después de que se ha determinado la probable causa más importante, en ocasiones es necesario analizarla con mayor detalle, y para ello es necesario emplear de nuevo el diagrama de Ishikawa.
Esto fue lo que se hizo en el caso del subensamble del chasis, de donde se obtuvo la figura,
al analizar cada una de las posibles causas que afectan el ensamble del chasis se llegó a la conclusión de que posiblemente el problema se debía al mal manejo de la tina en la operación de ensamble (transporte), el cual consistía en que: “después de efectuar la operación de aplicación de fundente, la tina es colgada de las perforaciones de la boca. Para ello se utilizan dos ganchos, y queda a criterio
del operario la distancia entre uno y otro, la cual puede ser más abierta o cerrada. Esto hace que cuando la tina pasa por el horno a altas temperaturas, la boca de ésta se deforme y quede ovalada. Además, se deforman las perforaciones de donde se sujeta con los ganchos”.

Ante esto, la propuesta de solución fue: “después de la operación de aplicar fundente a la tina, ésta debe colocarse boca abajo sobre una parrilla. Esto permite que al no resistir su propio peso y tener cuatro puntos de apoyo, no se causen deformaciones en la boca ni en las perforaciones. Dicha parrilla será sujetada por herrajes para introducirla al horno”. Al realizar el análisis del costo de la solución y de los benefi cios obtenidos en un año, se obtuvo que estos últimos superaban en más de 10 veces a lo que se necesitaba invertir para instaurar la solución. Además de otros tipos de benefi cios, como menos demoras en la línea de ensamble, se evitarían despostillamientos en perforaciones provocadas al enderezar latina, así como una mejora de la calidad en las lavadoras.
Por lo anterior, la solución propuesta fue aplicada con excelentes resultados. Dado el tipo de causa encontrada se podría comentar con sorpresa: “cómo no se habían dado cuenta de lo obvio que es que al meter la tina de esa forma a un horno a altas temperaturas se van a presentar deformaciones”, pero en una empresa donde la solución era corregir el efecto y no las causas, ese tipo de obviedades persisten.

Aspectos o factores a considerar en las 6 M

Mano de obra o gente

• Conocimiento (¿la gente conoce su trabajo?).
• Entrenamiento (¿los operadores están entrenados?).
• Habilidad (¿los operadores han demostrado tener habilidad para el trabajo que realizan?).
• Capacidad (¿se espera que cualquier trabajador lleve a cabo su labor de manera eficiente?).
• ¿La gente está motivada? ¿Conoce la importancia de su trabajo por la calidad?

Métodos

• Estandarización (¿las responsabilidades y los procedimientos de trabajo están definidos de manera clara y adecuada o dependen del criterio de cada persona?).
• Excepciones (¿cuando el procedimiento estándar no se puede llevar a cabo existe un procedimiento alternativo definido claramente?).
• Definición de operaciones (¿están definidas las operaciones que constituyen los procedimientos?, ¿cómo se decide si la operación fue realizada de manera correcta?).

La contribución a la calidad por parte de esta rama es fundamental, ya que por un lado cuestiona si están definidos los métodos de trabajo, las operaciones y las responsabilidades; por el otro, en caso de que sí estén definidas, cuestiona si son adecuados.

Máquinas o equipos

• Capacidad (¿las máquinas han demostrado ser capaces de dar la calidad que se requiere?).
• Condiciones de operación (¿las condiciones de operación en términos de las variables de entrada son las adecuadas?, ¿se ha realizado algún estudio que lo respalde?).
• ¿Hay diferencias? (hacer comparaciones entre máquinas, cadenas, estaciones, instalaciones, etc. ¿Se identificaron grandes diferencias?).
• Herramientas (¿hay cambios de herramientas periódicamente?, ¿son adecuados?).
• Ajustes (¿los criterios para ajustar las máquinas son claros y han sido determinados de forma adecuada?).
• Mantenimiento (¿hay programas de mantenimiento preventivo?, ¿son adecuados?).

Material

• Variabilidad (¿se conoce cómo influye la variabilidad de los materiales o materia prima sobre el problema?).
• Cambios (¿ha habido algún cambio reciente en los materiales?).
• Proveedores (¿cuál es la influencia de múltiples proveedores?, ¿se sabe si hay diferencias significativas y cómo influyen éstas?).
• Tipos (¿se sabe cómo influyen los distintos tipos de materiales?).

Mediciones

• Disponibilidad (¿se dispone de las mediciones requeridas para detectar o prevenir el problema?).
• Definiciones (¿están definidas de manera operacional las características que son medidas?).
• Tamaño de la muestra (¿han sido medidas suficientes piezas?, ¿son representativas de tal
forma que las decisiones tengan sustento?).
• Repetibilidad (¿se tiene evidencia de que el instrumento de medición es capaz de repetir la medida con la precisión requerida?).
• Reproducibilidad (¿se tiene evidencia de que los métodos y criterios usados por los operadores para tomar mediciones son adecuados?)
• Calibración o sesgo (¿existe algún sesgo en las medidas generadas por el sistema de medición?).

Esta rama destaca la importancia que tiene el sistema de medición para la calidad, ya que las mediciones a lo largo del proceso son la base para tomar decisiones y acciones; por lo tanto, debemos preguntarnos si estas mediciones son representativas y correctas, es decir, si en el contexto del problema que se está analizando, las mediciones son de calidad, y si los resultados de medición, las pruebas y la inspección son fiables.

Medio ambiente

• Ciclos (¿existen patrones o ciclos en los procesos que dependen de condiciones del medio ambiente?).
• Temperatura (¿la temperatura ambiental influye en las operaciones?).

Ventajas del método 6 M

• Obliga a considerar una gran cantidad de elementos asociados con el problema.
• Es posible usarlo cuando el proceso no se conoce a detalle.
• Se concentra en el proceso y no en el producto.

Desventajas del método 6 M

• En una sola rama se identifican demasiadas causas potenciales.
• Se tiende a concentrar en pequeños detalles del proceso.
• No es ilustrativo para quienes desconocen el proceso.

TEMA # 10 - HERRAMIENTAS BASICAS PARA EL CONTROL DE CALIDAD 1


Diagrama de Pareto

Se reconoce que más de 80% de la problemática en una organización es por causas comunes, es decir, se debe a problemas o situaciones que actúan de manera permanente sobre los procesos. Pero, además, en todo proceso son pocos los problemas o situaciones vitales que contribuyen en gran medida a la problemática global de un proceso o una empresa. Lo anterior es la premisa del diagrama de Pareto, el cual es un gráfico especial de barras cuyo campo de análisis o aplicación son los datos categóricos, y tiene como objetivo ayudar a localizar el o los problemas vitales, así como sus principales causas. La idea es que cuando se quiere mejorar un proceso o atender sus problemas, no se den “palos de ciego” y se trabaje en todos los problemas al mismo tiempo atacando todas sus causas a la vez, sino que, con base en los datos e información aportados por un análisis estadístico, se establezcan prioridades y se enfoquen los esfuerzos donde éstos tengan mayor impacto.

La viabilidad y utilidad general del diagrama está respaldada por el llamado principio de Pareto, conocido como “Ley 80-20” o “Pocos vitales, muchos triviales”, en el cual se reconoce que pocos elementos (20%) generan la mayor parte del efecto (80%), y el resto de los elementos propician muy poco del efecto total.

El nombre del principio se determinó en honor al economista italiano Wilfredo Pareto (1843-1923).


Pareto para problemas de primer nivel

Al representar los datos de las botas por medio de una gráfica, con las barras ubicadas de izquierda a derecha en forma decreciente, de acuerdo con la frecuencia, se obtiene el diagrama de Pareto de la figura, donde la escala vertical izquierda está en términos del número de botas rechazadas y la vertical derecha en porcentaje. 

La línea que está arriba de las barras representa la magnitud acumulada de los defectos hasta completar el total. En la gráfica se aprecia que el defecto reventado de la piel es el más frecuente (de mayor impacto), ya que representa 50% del total de los defectos. En este defecto es preciso centrar un verdadero proyecto de mejora para determinar las causas de fondo, y dejar de dar la “solución” que hasta ahora se ha adoptado: mandar las botas a la segunda.


Pareto para causas o de segundo nivel

Lo que sigue es no precipitarse a sacar conclusiones del primer Pareto, ya que al actuar de manera impulsiva se podrían obtener conclusiones erróneas; por ejemplo, una posible conclusión “lógica” a partir del Pareto de la figura 6.1 sería la siguiente: el problema principal se debe en su mayor parte a la calidad de la piel, por lo que se debe comunicar al proveedor actual y buscar mejores proveedores. Sin embargo, es frecuente que las conclusiones reactivas y “lógicas” sean erróneas. Por lo tanto, después del Pareto para problemas, el análisis debe orientarse exclusivamente hacia la búsqueda de las causas del problema de mayor impacto.

Para ello es preciso preguntarse si este problema se presenta con la misma intensidad en todos los modelos, materiales, turnos, máquinas, operadores, etc., ya que si en alguno de ellos se encuentran diferencias importantes, se estarán localizando pistas específicas sobre las causas más importantes del problema. En el caso de las botas, lo que se hizo fue clasificar o estratificar el defecto de reventado de
la piel de acuerdo con el modelo de botas, y se encontraron los siguientes datos:


Al representar lo anterior en un diagrama de Pareto de segundo nivel se obtiene la gráfica de la figura, en la cual se observa que el problema de reventado de la piel se presenta principalmente en el modelo de botas 512, y que en los otros modelos es un defecto de la misma importancia que las otras fallas. Entonces, más que pensar en que los defectos de reventado de la piel se deben en su mayor parte a la calidad de la piel, es mejor buscar la causa del problema exclusivamente en el proceso de fabricación del modelo 512.

Para que el análisis por modelo que se realizó sea útil es necesario que la frecuencia con la que se produce cada uno de los modelos sea similar, como fue el caso de las botas. Si un modelo se produce mucho más, será lógico esperar que haya más defectos. Cuando este último sea el caso, entonces de la producción total de cada modelo se debe calcular el porcentaje de artículos defectuosos debido al problema principal, y con base en esto hacer el Pareto de segundo nivel.

En general, es recomendable hacer análisis de Pareto de causas o de segundo nivel, de acuerdo con aquellos factores que pueden dar una pista de por dónde está la causa principal y dónde centrar los esfuerzos de mejora. De hecho, después de un Pareto de segundo nivel exitoso, como el de la figura, se debe analizar la posibilidad de aplicar un Pareto de tercer nivel. Por ejemplo, en el caso de las botas se buscaría ver si los defectos de reventado de piel en el modelo 512 se dan más en alguna máquina, talla, turno, etcétera. El ejemplo revela que en la solución de problemas una pista o una nueva información debe llevar a descartar opciones, así como a profundizar la búsqueda y el análisis en una dirección más específica, para de esa forma no caer en conclusiones precipitadas y erróneas. 

El análisis de Pareto encarna esta idea, ya que la técnica sugiere que después de hacer un primer diagrama de Pareto en el que se detecte el problema principal, es necesario realizar un análisis de Pareto para causas o de segundo nivel o más niveles, en el que se estratifique el defecto más importante por turno, modelo, materia prima o alguna otra fuente de variación que dé indicios de dónde, cuándo o bajo qué circunstancias se manifiesta más el defecto principal.


Recomendaciones para realizar análisis de Pareto

1. En general, el diagrama de Pareto clasifica problemas en función de categorías o factores de interés; por ejemplo, por tipo de defecto o queja, modelo de producto, tamaño de la pieza, tipo de máquina, edad del obrero, turno de producción, tipo de cliente, tipo de accidente, pro veedor, métodos de trabajo u operación. Cada clasificación genera un diagrama.

2. El eje vertical izquierdo debe representar las unidades de medida que proporcionen una idea clara de la contribución de cada categoría a la problemática global. De esta forma, si la gravedad o costo de cada defecto o categoría es muy diferente, entonces el análisis debe hacerse sobre el resultado de multiplicar la frecuencia por la gravedad o costo unitario correspondiente. Por ejemplo, en una empresa se detectaron seis tipos básicos de defectos, que se han presentado con la siguiente frecuencia: 
A (12%), B (18%), C (30%), D (11%), E (19%) y F (10%). 

Pero el costo unitario de reparar cada defecto es muy diferente y está dado por: 

A = 3, B = 6, C = 2, D = 3, E = 4 y F = 7. 

Es claro que C es el defecto más frecuente, pero tiene un bajo costo unitario de reparación. En contraste, el defecto F es el de mayor costo unitario, pero su frecuencia de ocurrencia es relativamente baja. De aquí que el análisis de Pareto deba partir de la multiplicación de frecuencia por costo, con lo que se obtiene que el impacto global de cada defecto es:

A → 36; B → 108; C → 60; D → 33; E → 76; F → 70

De aquí se ve que el defecto de mayor impacto es el B; por lo tanto, sobre éste se debería centrar el proyecto de mejora.

3. En un análisis, lo primero es hacer un Pareto de problemas (primer nivel) y después al problema dominante, si es que se encontró, se le hacen tantos Paretos de causas (segundo nivel) como se crea conveniente. Se recomienda no pasar al tercer nivel hasta agotar todas las opciones (factores de interés) de segundo nivel.

4. Un criterio rápido para saber si la primera barra o categoría es significativamente más importante que las demás, no es que ésta represente 80% del total, sino que supere o predomine de manera clara sobre al resto de las barras.

5. Cuando en un DP no predomina ninguna barra y tiene una apariencia plana o un descenso lento en forma de escalera, significa que se deben reanalizar los datos o el problema y su estrategia de clasificación. En estos casos y, en general, es conveniente ver el Pareto desde distintas perspectivas, siendo creativo y clasificando el problema o los datos de distintas maneras, hasta localizar un componente importante. Por ejemplo, ver si algunas de las categorías son muy parecidas, de forma que se pudieran clasificar en una sola.

6. El eje vertical derecho representa una escala en porcentajes de 0 a 100, para que con base en ésta sea posible evaluar la importancia de cada categoría con respecto a las demás, en términos porcentuales; en tanto, la línea acumulativa representa los porcentajes acumulados de las categorías.

7. Para que no haya un número excesivo de categorías que dispersen el fenómeno se agrupan las categorías que tienen relativamente poca importancia en una sola y se le denomina la categoría “otras”, aunque no es conveniente que ésta represente un porcentaje de los más altos. Si esto ocurre, se debe revisar la clasificación y evaluar alternativas.

Algunas bondades adicionales del diagrama de Pareto son las siguientes:

• El DP, al expresar gráficamente la importancia del problema, facilita la comunicación y recuerda de manera permanente cuál es la falla principal, por lo tanto es útil para motivar la cooperación de todos los involucrados, puesto que con un vistazo cualquier persona puede ver cuáles son los problemas principales.
• Es más adecuado concentrar las energías en el problema vital e ir al fondo de sus causas que dispersar los esfuerzos en todos. Además, en general, es más fácil reducir una barra alta a la mitad que una chica a cero.
• Elimina la vaguedad en la magnitud de los problemas y proporciona una medición objetiva y expresable en términos gráficos, por lo tanto, sirve para evaluar de manera objetiva con el mismo diagrama, las mejoras logradas con un proyecto de mejora Seis Sigma, comparando la situación antes y después del proyecto.

Pasos para la construcción de un diagrama de Pareto

1. Es necesario decidir y delimitar el problema o área de mejora que se va a atender, así como tener claro qué objetivo se persigue. A partir de lo anterior, se procede a visualizar o imaginar qué tipo de diagrama de Pareto puede ser útil para localizar prioridades o entender mejor el problema.

2. Con base en lo anterior se discute y decide el tipo de datos que se van a necesitar, así como los posibles factores que sería importante estratificar. Entonces, se construye una hoja de verificación bien diseñada para la colección de datos que identifique tales factores.

3. Si la información se va a tomar de reportes anteriores o si se va a colectar, es preciso definir el periodo del que se tomarán los datos y determinar a la persona responsable de ello.

4. Al terminar de obtener los datos se construye una tabla donde se cuantifique la frecuencia de cada defecto, su porcentaje y demás información.

5. Se decide si el criterio con el que se van a jerarquizar las diferentes categorías será directamente la frecuencia o si será necesario multiplicarla por su costo o intensidad correspondiente.De ser así, es preciso multiplicarla. Después de esto, se procede a realizar la gráfica.

6. Documentación de referencias del DP, como son títulos, periodo, área de trabajo, etc.

7. Se realiza la interpretación del DP y, si existe una categoría que predomina, se hace un análisis de Pareto de segundo nivel para localizar los factores que más influyen en el mismo 

TEMA # 9 - INDICES DE CAPACIDAD 5


ejemplo:

Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.

Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y grafi car la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.

Índice Cpm (índice de Taguchi)

Los índices Cp y Cpk están pensados a partir de lo importante que es reducir la variabilidad de un proceso para cumplir con las especificaciones. Sin embargo, desde el punto de vista de G. Taguchi, cumplir con especificaciones no es sinónimo de buena calidad y la reducción de la variabilidad debe darse en torno al valor nominal (calidad óptima). Es decir, la mejora de un proceso según Taguchi debe estar orientada a reducir su variabilidad alrededor del valor nominal, N, y no sólo para cumplir
con especificaciones. En consecuencia, Taguchi (1986) propone que la capacidad del proceso se mida con el índice Cpm que está definido por:
donde τ (tau) está dada por:
y N es el valor nominal de la característica de calidad; EI y ES son las especificaciones inferior y superior. El valor de N por lo general es igual al punto medio de las especificaciones, es decir, N = 0.5(ES + EI). Nótese que el índice Cpm compara el ancho de las especificaciones con 6τ; pero τ no sólo toma en cuenta la variabilidad del proceso, a través de σ 2, sino que también toma en cuenta su centrado a través de (μ − N)2. De esta forma, si el proceso está centrado, es decir, si μ = N, entonces Cp, Cpk y Cpm son iguales.

En el caso del ejemplo acerca de la longitud de capa para llantas:
Interpretación

Cuando el índice Cpm es menor que uno significa que el proceso no cumple con especificaciones, ya sea por problemas de centrado o por exceso de variabilidad. Por lo tanto, en el caso de las llantas no se cumple con especificaciones, y como se aprecia en la figura 5.1, la razón principal es que el proceso está descentrado.

Por el contrario, cuando el índice Cpm es mayor que uno, eso quiere decir que el proceso cumple con especificaciones, y en particular que la media del proceso está dentro de la tercera parte central de la banda de las especificaciones. Si Cpm es mayor que 1.33, entonces el proceso cumple con especificaciones, pero además la media del proceso está dentro de la quinta parte central del rango de especificaciones. En el caso del ejemplo 5.1 acerca de la longitud de capa para llantas, la quinta parte central de la banda de especificaciones es 780 ± (10/5).

Para finalizar este apartado es necesario recordar que según las interpretaciones de los índices antes vistos, para que éstos sean aplicables como pronósticos del desempeño del proceso en el futuro inmediato, es importante que los procesos sean estables (véase capítulo 7). Además, se requiere que la característica de calidad se distribuya en forma normal o por lo menos de una manera no tan diferente de ésta. Algo relevante es que los cálculos de los índices estén basados en los parámetros poblacionales del proceso μ y σ. Si los cálculos están basados en una muestra pequeña, la interpretación cambia, como lo veremos más adelante.

TEMA # 8 - INDICES DE CAPACIDAD 4


ejemplo:

Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.

Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y graficar la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.

Índice K

Como se ha visto a través del ejemplo 5.1, un aspecto importante en el estudio de la capacidad de un proceso es evaluar si la distribución de la característica de calidad está centrada con respecto a las especificaciones, por ello es útil calcular el índice de centrado del proceso, K, que se calcula de la siguiente manera:
Como se aprecia, este indicador mide la diferencia entre la media del proceso, μ, y el valor objetivo o nominal, N (target), para la correspondiente característica de calidad; y compara esta diferencia con la mitad de la amplitud de las especificaciones. Multiplicar por 100 ayuda a tener una medida porcentual. La interpretación usual de los valores de K es como sigue:

• Si el signo del valor de K es positivo significa que la media del proceso es mayor al valor nominal y será negativo cuando μ < N.

• Valores de K menores a 20% en términos absolutos se consideran aceptables, pero a medida que el valor absoluto de K sea más grande que 20%, indica un proceso muy descentrado, lo cual contribuye de manera significativa a que la capacidad del proceso para cumplir especificaciones sea baja.

• El valor nominal, N, es la calidad objetivo y óptima; cualquier desviación con respecto a este valor lleva un detrimento en la calidad. Por ello, cuando un proceso esté descentrado de manera significativa se deben hacer esfuerzos serios para centrarlo, lo que por lo regular es más fácil que disminuir la variabilidad.

En el ejemplo de la longitud de la capa para llantas, si se considera que el valor nominal para esta longitud es N = 780, entonces el índice K es:
De esta forma, la media del proceso está desviada 30% a la derecha del valor nominal, por lo que el centrado del proceso es inadecuado, y esto contribuye de manera significativa a la baja capacidad del proceso para cumplir con la especificación superior, como se vio en la figura 5.1 y en los índices de capacidad anteriores.

lunes, 13 de febrero de 2017

TEMA # 7 - INDICES DE CAPACIDAD 3


ejemplo:

Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.

Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y grafi car la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.

Índices Cpi , Cps y Cpk

Como ya se mencionó, la desventaja de los índices Cp y Cr es que no toman en cuenta el centrado del proceso, debido a que en las fórmulas para calcularlos no se incluye de ninguna manera la media del proceso, μ. Una forma de corregir esto consiste en evaluar por separado el cumplimiento de la especificación inferior y superior, a través del índice de capacidad para la especificación inferior, Cpi, y índice de capacidad para la especificación superior, Cps, respectivamente, los cuales se calculan de la siguiente manera:
Estos índices sí toman en cuenta μ, al calcular la distancia de la media del proceso a una de las especificaciones. Esta distancia representa la variación tolerada para el proceso de un solo lado de la media. Por esto sólo se divide entre 3σ porque sólo se está tomando en cuenta la mitad de la variación natural del proceso.
Para interpretar los índices unilaterales es de utilidad la tabla 5.1; no obstante, para considerar que el proceso es adecuado, el valor de Cpi o Cps debe ser mayor que 1.25, en lugar de 1.33. La tabla 5.2 también ayuda a interpretar los valores de estos índices unilaterales en términos del porcentaje de los productos que no cumplen con especificaciones.

En el ejemplo 5.1, de la longitud de las capas de las llantas, tenemos que:



Luego, como el índice para la especificación superior, Cps, es el más pequeño y es menor que uno, entonces se tienen problemas por la parte superior (se están cortando capas más grandes de lo tolerado). Si se usa la tabla 5.2, dado que Cps = 0.78, entonces el porcentaje de producto que es más grande que la especificación superior está entre 0.82% y 1.79% (al realizar la interpolación se obtiene un valor cercano a 1%). Cabe destacar que no hay problema con la especificación inferior, ya que Cpi = 1.44, y al ser mayor que 1.25 se considera que el proceso cumple de manera adecuada esa especificación.

Por su parte el índice Cpk, que se conoce como índice de capacidad real del proceso, es considerado una versión corregida del Cp que sí toma en cuenta el centrado del proceso. Existen varias formas equivalentes para calcularlo, una de las más comunes es la siguiente:
Como se aprecia, el índice Cpk es igual al valor más pequeño de entre Cpi y Cps, es decir, es igual al índice unilateral más pequeño, por lo que si el valor del índice Cpk es satisfactorio (mayor que 1.25), eso indica que el proceso en realidad es capaz. Si Cpk < 1, entonces el proceso no cumple con por lo menos una de las especificaciones. Algunos elementos adicionales para la interpretación del índice Cpk son los siguientes:

• El índice Cpk siempre va a ser menor o igual que el índice Cp. Cuando son muy próximos, eso indica que la media del proceso está muy cerca del punto medio de las especificaciones, por lo que la capacidad potencial y real son similares.

• Si el valor del índice Cpk es mucho más pequeño que el Cp, significa que la media del proceso está alejada del centro de las especificaciones. De esa manera, el índice Cpk estará indicando la capacidad real del proceso, y si se corrige el problema de descentrado se alcanzará la capacidad potencial indicada por el índice Cp.

• Cuando el valor del índice Cpk sea mayor a 1.25 en un proceso ya existente, se considerará que se tiene un proceso con capacidad satisfactoria. Mientras que para procesos nuevos se pide que Cpk > 1.45.

• Es posible tener valores del índice Cpk iguales a cero o negativos, e indican que la media del
proceso está fuera de las especificaciones.

En el ejemplo 5.1, de la longitud de las capas de las llantas, tenemos que:
lo cual, en términos generales, indica una capacidad no satisfactoria. Por lo tanto, cierta proporción de las capas para las llantas no tiene una longitud adecuada, como se vio con los índices unilaterales y en la gráfica 5.1. Al utilizar la segunda parte de la tabla 5.2, vemos que con Cpk = 0.78 el porcentaje de capas que exceden los 790 mm se encuentra entre 0.82 y 1.79%. La primera recomendación de mejora para ese proceso es que se optimice su centrado, con lo cual alcanzaría su mejor potencial actual que indica el valor de Cp = 1.11.


TEMA # 6 - INDICES DE CAPACIDAD 2


ejemplo:

Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.

Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y grafi car la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.

Índice Cr (capacidad de razon potencial)

Un índice menos conocido que el Cp, es el que se conoce como razón de capacidad potencial, Cr, el cual está definido por:

Como se puede apreciar, el índice Cr es el inverso del Cp, ya que compara la variación real frente a la variación tolerada. Con este índice se pretende que el numerador sea menor que el denominador, es decir, lo deseable son valores de Cr pequeños (menores que 1). La ventaja del índice Cr sobre el Cp es que su interpretación es un poco más intuitiva, a saber: el valor del índice Cr representa la proporción de la banda de especificaciones que es ocupada por el proceso. Por ejemplo, si el Cr = 1.20, querrá decir que la variación del proceso abarca o cubre 120% de la banda de especificaciones, por lo que su capacidad potencial es inadecuada.

El Cr para el ejemplo de la longitud de las capas de las llantas, es:

que es un valor parcialmente adecuado, pues indica que la variación del proceso potencialmente cubre 90% de la banda de especificaciones. Sin embargo, este índice tampoco toma en cuenta el hecho de que el proceso está descentrado, como es claro a partir de la figura 5.1.

TEMA # 5 - INDICES DE CAPACIDAD 1


ejemplo:

Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.
Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y grafi car la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.

indice cp (capacidad potencial del proceso) 

El índice de capacidad potencial del proceso, Cp, se define de la siguiente manera:

donde σ representa la desviación estándar del proceso, mientras que ES y EI son las especificaciones superior e inferior para la característica de calidad. Como se puede observar, el índice Cp compara el ancho de las especificaciones o la variación tolerada para el proceso con la amplitud de la variación real de éste:
Decimos que 6σ (seis veces la desviación estándar) es la variación real, debido a las propiedades
de la distribución normal (capítulo 3), en donde se afirma que entre μ ± 3σ se encuentra 99.73% de los valores de una variable con distribución normal. Incluso si no hay normalidad, en μ ± 3σ se encuentra un gran porcentaje de la distribución debido a la desigualdad de Chebyshev y a la regla empírica.

Interpretación del índice Cp

Para que el proceso sea considerado potencialmente capaz de cumplir con especificaciones, se requiere que la variación real (natural) siempre sea menor que la variación tolerada. Deaquí que lo deseable es que el índice Cp sea mayor que 1; y si el valor del índice Cp es menor que uno, es una evidencia de que el proceso no cumple con las especificaciones. Para una mayor precisión en la interpretación en la tabla 5.1 se presentan cinco categorías de procesos que dependen del valor del índice Cp, suponiendo que el proceso está centrado. Ahí se ve que el Cp debe ser ma yor que 1.33, o que 1.50 si se quiere tener un proceso bueno; pero debe ser mayor o igual que dos si se quiere tener un proceso de clase mundial (calidad Seis Sigma). Además, en la tabla 5.2 se representó el valor del índice en el porcentaje de artículos que no cumplirían especificaciones, así como en la cantidad de artículos o partes defectuosas por cada millón producido (PPM). Por ejemplo, si el índice Cp = 0.8 y el proceso estuviera centrado, entonces el correspondiente proceso produciría 1.64% de piezas fuera de especificaciones (que corresponde a 16395 partes malas por cada millón producido). Una observación que se deriva de la tabla referida es que el valor del índice Cp no es igual al porcentaje de piezas que cumplen con especificaciones.



Un aspecto que es necesario destacar es que la interpretación que se da en las tablas 5.1 y 5.2 está fundamentada en cuatro supuestos: que la característica de calidad se distribuye de manera normal, que el proceso está centrado y es estable (está en control estadístico), y que se conoce la desviación estándar del proceso. Es decir, la desviación estándar no es una estimación basada en una muestra. La violación de alguno de estos supuestos, sobre todo de los últimos dos, afecta de manera sensible la interpretación de los índices. Más adelante se verá la interpretación de los índices cuando éstos se calculan (estiman) a partir de una muestra.

Si al analizar el proceso se encuentra que su capacidad para cumplir especificaciones es mala, entonces algunas alternativas de actuación son: mejorar el proceso (centrar y reducir variación), su control y el sistema de medición, modificar tolerancias o inspeccionar al 100% los productos. Por el contrario, si hay una capacidad excesiva, ésta se puede aprovechar, por ejemplo: con la venta de la precisión o del método, reasignando productos a máquinas menos precisas, así como al acelerar el proceso y reducir la cantidad de inspección.
En el caso del ejemplo 5.1 de la longitud de capa para las llantas, el índice Cp está dado por:
La variación tolerada es de 20 y la variación real es ligeramente menor ya que es de 18. De acuerdo con la tabla 5.1, el proceso tiene una capacidad potencial parcialmente adecuada y requiere de un control estricto. En función de la tabla 5.2 se espera que si el proceso estuviera centrado arrojaría aproximadamente 0.0967% de las capas fuera de especificaciones, lo cual corresponde a 967 PPM y se considera parcialmente adecuado. Sin embargo, como es claro, a partir de la figura 5.1 el proceso no está centrado (lo que no toma en cuenta el índice Cp), y eso provoca que genere 1.0% fuera de la especificación superior, lo cual corresponde a 10 000 PPM.