ejemplo:
Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.
Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y grafi car la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.
Índice Cpm (índice de Taguchi)
Los índices Cp y Cpk están pensados a partir de lo importante que es reducir la variabilidad de un proceso para cumplir con las especificaciones. Sin embargo, desde el punto de vista de G. Taguchi, cumplir con especificaciones no es sinónimo de buena calidad y la reducción de la variabilidad debe darse en torno al valor nominal (calidad óptima). Es decir, la mejora de un proceso según Taguchi debe estar orientada a reducir su variabilidad alrededor del valor nominal, N, y no sólo para cumplir
con especificaciones. En consecuencia, Taguchi (1986) propone que la capacidad del proceso se mida con el índice Cpm que está definido por:
donde τ (tau) está dada por:
y N es el valor nominal de la característica de calidad; EI y ES son las especificaciones inferior y superior. El valor de N por lo general es igual al punto medio de las especificaciones, es decir, N = 0.5(ES + EI). Nótese que el índice Cpm compara el ancho de las especificaciones con 6τ; pero τ no sólo toma en cuenta la variabilidad del proceso, a través de σ 2, sino que también toma en cuenta su centrado a través de (μ − N)2. De esta forma, si el proceso está centrado, es decir, si μ = N, entonces Cp, Cpk y Cpm son iguales.
En el caso del ejemplo acerca de la longitud de capa para llantas:
Interpretación
Cuando el índice Cpm es menor que uno significa que el proceso no cumple con especificaciones, ya sea por problemas de centrado o por exceso de variabilidad. Por lo tanto, en el caso de las llantas no se cumple con especificaciones, y como se aprecia en la figura 5.1, la razón principal es que el proceso está descentrado.
Por el contrario, cuando el índice Cpm es mayor que uno, eso quiere decir que el proceso cumple con especificaciones, y en particular que la media del proceso está dentro de la tercera parte central de la banda de las especificaciones. Si Cpm es mayor que 1.33, entonces el proceso cumple con especificaciones, pero además la media del proceso está dentro de la quinta parte central del rango de especificaciones. En el caso del ejemplo 5.1 acerca de la longitud de capa para llantas, la quinta parte central de la banda de especificaciones es 780 ± (10/5).
Para finalizar este apartado es necesario recordar que según las interpretaciones de los índices antes vistos, para que éstos sean aplicables como pronósticos del desempeño del proceso en el futuro inmediato, es importante que los procesos sean estables (véase capítulo 7). Además, se requiere que la característica de calidad se distribuya en forma normal o por lo menos de una manera no tan diferente de ésta. Algo relevante es que los cálculos de los índices estén basados en los parámetros poblacionales del proceso μ y σ. Si los cálculos están basados en una muestra pequeña, la interpretación cambia, como lo veremos más adelante.
No hay comentarios:
Publicar un comentario