sábado, 18 de febrero de 2017

TEMA # 8 - INDICES DE CAPACIDAD 4


ejemplo:

Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.

Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y graficar la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.

Índice K

Como se ha visto a través del ejemplo 5.1, un aspecto importante en el estudio de la capacidad de un proceso es evaluar si la distribución de la característica de calidad está centrada con respecto a las especificaciones, por ello es útil calcular el índice de centrado del proceso, K, que se calcula de la siguiente manera:
Como se aprecia, este indicador mide la diferencia entre la media del proceso, μ, y el valor objetivo o nominal, N (target), para la correspondiente característica de calidad; y compara esta diferencia con la mitad de la amplitud de las especificaciones. Multiplicar por 100 ayuda a tener una medida porcentual. La interpretación usual de los valores de K es como sigue:

• Si el signo del valor de K es positivo significa que la media del proceso es mayor al valor nominal y será negativo cuando μ < N.

• Valores de K menores a 20% en términos absolutos se consideran aceptables, pero a medida que el valor absoluto de K sea más grande que 20%, indica un proceso muy descentrado, lo cual contribuye de manera significativa a que la capacidad del proceso para cumplir especificaciones sea baja.

• El valor nominal, N, es la calidad objetivo y óptima; cualquier desviación con respecto a este valor lleva un detrimento en la calidad. Por ello, cuando un proceso esté descentrado de manera significativa se deben hacer esfuerzos serios para centrarlo, lo que por lo regular es más fácil que disminuir la variabilidad.

En el ejemplo de la longitud de la capa para llantas, si se considera que el valor nominal para esta longitud es N = 780, entonces el índice K es:
De esta forma, la media del proceso está desviada 30% a la derecha del valor nominal, por lo que el centrado del proceso es inadecuado, y esto contribuye de manera significativa a la baja capacidad del proceso para cumplir con la especificación superior, como se vio en la figura 5.1 y en los índices de capacidad anteriores.

No hay comentarios:

Publicar un comentario