lunes, 13 de febrero de 2017

TEMA # 7 - INDICES DE CAPACIDAD 3


ejemplo:

Una característica de calidad importante en la fabricación de una llanta es la longitud de capa, que para cierto tipo de llanta debe ser de 780 mm con una tolerancia de ±10 mm. La longitud es el resultado de un proceso de corte, por lo que este proceso debe garantizar una longitud entre la especificación inferior EI = 770 y la superior ES = 790, con un valor ideal o nominal de N = 780. Para monitorear el correcto funcionamiento del proceso de corte, cada media hora se toman cinco capas y se miden. De acuerdo con las mediciones realizadas en el último mes, en donde el proceso ha estado trabajando de manera estable, se tiene que la media y la desviación estándar del proceso (poblacional) son μ = 783 y σ = 3, respectivamente. Con base en lo anterior se quiere saber en qué medida el proceso ha estado cumpliendo con especificaciones.

Una primera forma de hacer esto es aplicar lo visto en los capítulos 2 y 3, y grafi car la distribución del proceso. De manera específica, en la fi gura 5.1 se muestra la capacidad del proceso para cumplir con la longitud deseada (suponiendo una distribución normal, con μ = 783 y σ =3), de donde destaca que el proceso no está centrado, ya que la media del proceso, μ = 783, está alejada del centro de las especificaciones. Esta situación causa que aproximadamente 1% de las tiras tenga una longitud superior a lo máximo tolerado (790 mm). Si el proceso se centrara, se lograría cumplir con especificaciones de forma razonable, lo cual significa que la variabilidad del proceso se encuentra en un nivel aceptable. Enseguida se ve cómo los índices de capacidad reflejan las situaciones que se observan.

Índices Cpi , Cps y Cpk

Como ya se mencionó, la desventaja de los índices Cp y Cr es que no toman en cuenta el centrado del proceso, debido a que en las fórmulas para calcularlos no se incluye de ninguna manera la media del proceso, μ. Una forma de corregir esto consiste en evaluar por separado el cumplimiento de la especificación inferior y superior, a través del índice de capacidad para la especificación inferior, Cpi, y índice de capacidad para la especificación superior, Cps, respectivamente, los cuales se calculan de la siguiente manera:
Estos índices sí toman en cuenta μ, al calcular la distancia de la media del proceso a una de las especificaciones. Esta distancia representa la variación tolerada para el proceso de un solo lado de la media. Por esto sólo se divide entre 3σ porque sólo se está tomando en cuenta la mitad de la variación natural del proceso.
Para interpretar los índices unilaterales es de utilidad la tabla 5.1; no obstante, para considerar que el proceso es adecuado, el valor de Cpi o Cps debe ser mayor que 1.25, en lugar de 1.33. La tabla 5.2 también ayuda a interpretar los valores de estos índices unilaterales en términos del porcentaje de los productos que no cumplen con especificaciones.

En el ejemplo 5.1, de la longitud de las capas de las llantas, tenemos que:



Luego, como el índice para la especificación superior, Cps, es el más pequeño y es menor que uno, entonces se tienen problemas por la parte superior (se están cortando capas más grandes de lo tolerado). Si se usa la tabla 5.2, dado que Cps = 0.78, entonces el porcentaje de producto que es más grande que la especificación superior está entre 0.82% y 1.79% (al realizar la interpolación se obtiene un valor cercano a 1%). Cabe destacar que no hay problema con la especificación inferior, ya que Cpi = 1.44, y al ser mayor que 1.25 se considera que el proceso cumple de manera adecuada esa especificación.

Por su parte el índice Cpk, que se conoce como índice de capacidad real del proceso, es considerado una versión corregida del Cp que sí toma en cuenta el centrado del proceso. Existen varias formas equivalentes para calcularlo, una de las más comunes es la siguiente:
Como se aprecia, el índice Cpk es igual al valor más pequeño de entre Cpi y Cps, es decir, es igual al índice unilateral más pequeño, por lo que si el valor del índice Cpk es satisfactorio (mayor que 1.25), eso indica que el proceso en realidad es capaz. Si Cpk < 1, entonces el proceso no cumple con por lo menos una de las especificaciones. Algunos elementos adicionales para la interpretación del índice Cpk son los siguientes:

• El índice Cpk siempre va a ser menor o igual que el índice Cp. Cuando son muy próximos, eso indica que la media del proceso está muy cerca del punto medio de las especificaciones, por lo que la capacidad potencial y real son similares.

• Si el valor del índice Cpk es mucho más pequeño que el Cp, significa que la media del proceso está alejada del centro de las especificaciones. De esa manera, el índice Cpk estará indicando la capacidad real del proceso, y si se corrige el problema de descentrado se alcanzará la capacidad potencial indicada por el índice Cp.

• Cuando el valor del índice Cpk sea mayor a 1.25 en un proceso ya existente, se considerará que se tiene un proceso con capacidad satisfactoria. Mientras que para procesos nuevos se pide que Cpk > 1.45.

• Es posible tener valores del índice Cpk iguales a cero o negativos, e indican que la media del
proceso está fuera de las especificaciones.

En el ejemplo 5.1, de la longitud de las capas de las llantas, tenemos que:
lo cual, en términos generales, indica una capacidad no satisfactoria. Por lo tanto, cierta proporción de las capas para las llantas no tiene una longitud adecuada, como se vio con los índices unilaterales y en la gráfica 5.1. Al utilizar la segunda parte de la tabla 5.2, vemos que con Cpk = 0.78 el porcentaje de capas que exceden los 790 mm se encuentra entre 0.82 y 1.79%. La primera recomendación de mejora para ese proceso es que se optimice su centrado, con lo cual alcanzaría su mejor potencial actual que indica el valor de Cp = 1.11.


No hay comentarios:

Publicar un comentario