martes, 7 de febrero de 2017

TEMA # 4 ESTADISTICA DESCRIPTIVA 3


Histograma y tabla de frecuencias

En las secciones anteriores se explicó que para el análisis de un conjunto de datos la clave es conocer su tendencia central y su dispersión. Ahora veremos que el histograma y la tabla de frecuencias permiten visualizar estos dos aspectos de un conjunto de datos, y además muestran la forma en que los datos se distribuyen dentro de su rango de variación. De manera específica, el histograma es una
representación gráfica, en forma de barras, de la distribución de un conjunto de datos o una variable, donde los datos se clasifican por su magnitud en cierto número de grupos o clases, y cada clase es representada por una barra, cuya longitud es proporcional a la frecuencia de los valores representados. Por lo general, el eje horizontal está formado por una escala numérica para mostrar la magnitud de los datos; mientras que en el eje vertical se representan las frecuencias.

Comúnmente el histograma se obtiene a partir de la tabla de frecuencias. Para obtener ésta, primero se divide el rango de variación de los datos en cierta cantidad de intervalos que cubren todo el rango, y después se determina cuántos datos caen en cada intervalo. Se recomienda que el número de intervalos o clases sea de 5 a 15. Para decidir un valor entre este rango existen varios criterios; por ejemplo, uno de ellos dice que el número de clases debe ser aproximadamente igual a la raíz cuadrada del número de datos. Otro criterio, conocido como la regla de Sturgess, señala que el número de clases es igual a 1 + 3.3*log10 (número de datos).

Se aprecia la tabla de frecuencias para los datos del grosor de los discos del ejemplo anterior ahí vemos que al aplicar la regla de Strugles (1 + 3.3*log10(125) = 7.9), se decidió formar ocho clases; la primera clase representa a los datos con magnitud entre 1.10 y 1.12, y la última clase es para los datos entre 1.24 y 1.26. En el intervalo de la primera clase hay tres datos que corresponden a 2.4% del total; la clase 5 es la de mayor frecuencia e indica que entre 1.18 y 1.20 hay 39 datos (31.2%). Por otro lado, se muestra el histograma correspondiente, en el cual se toma como eje vertical a la frecuencia, aunque también podría haberse usado una frecuencia relativa o porcentual. En el histograma se aprecia que la tendencia central de los datos se ubica alrededor de 1.18, no se observan datos raros o atípicos y la distribución de los datos tiene una forma similar a una campana.

Si en el histograma se insertan las especificaciones (1.10 y 1.30) para el grosor del disco, se observa que la variación de los datos (amplitud del histograma) es un poco menor que las especificaciones. Pero, con respecto a 1.20, que es el grosor óptimo, el proceso está moderadamente descentrado a la izquierda, como ya se había visto cuando se calculó la media. Además, el grosor de los discos no es satisfactorio, ya que la orilla izquierda del histograma debería estar alejada de la especificación inferior (EI = 1.10), lo cual no ocurre. Cabe comentar que aunque no hay ningún dato por debajo de la EI, no se debe perder de vista que el estudio se hace a partir de una muestra, por lo tanto, si se continúa tomando datos es casi seguro que se encontrarán mediciones fuera, como lo sugiere la prolongación de la cola izquierda de la curva imaginaria que suaviza al histograma. Con base en lo anterior, la primera acción que se habría de ejecutar para mejorar la capacidad del proceso de inyección de discos es mejorar su centrado.

A través del ejemplo anterior queda claro que el histograma ayuda a ver la tendencia central de los datos, facilita el entendimiento de la variabilidad y favorece el pensamiento estadístico, ya que de un solo vistazo se logra tener una idea acerca de la capacidad de un proceso, se evitan tomar decisiones sólo apoyándose en la media y se detectan datos raros y formas especiales de la distribución de los datos. Estos detalles de la interpretación del histograma los veremos con mayor profundidad a continuación.

tabla de distribución de frecuencia para los disco del anterior ejemplo:


gráfica del ejemplo:


Interpretación del histograma

Cuando un histograma se construye de manera correcta, es resultado de un número suficiente de datos (de preferencia más de 100), y éstos son representativos del estado del proceso durante el periodo de interés; entonces, se recomienda considerar los siguientes puntos en la interpretación del histograma.

1. Observar la tendencia central de los datos. Localizar en el eje horizontal o escala de medición las barras con mayores frecuencias. En el histograma de la figura 2.1, una parte sustancial de las mediciones se localiza entre 1.14 y 1.20 mm.

2. Estudiar el centrado del proceso. Para ello, es necesario apoyarse en el punto anterior y observar la posición central del cuerpo del histograma con respecto a la calidad óptima y a las especificaciones. Por ejemplo, en la figura 2.2 incisos a) y c) se muestran procesos centrados, el primero presenta poca variabilidad, pero en el segundo ocurre lo contrario. Mientras que en los incisos b) y d) se observan procesos descentrados, el primero con poca variabilidad y el segundo con mucha. Aun cuando se cumplan las especificaciones, si el proceso no está centrado, la calidad que se produce no es adecuada, ya que entre más se aleje del óptimo más mala calidad se tendrá. Por ello, en caso de tener un proceso descentrado se procede a realizar los ajustes o cambios necesarios para centrar el proceso.

3. Examinar la variabilidad del proceso. Consiste en comparar la amplitud de las especificaciones con el ancho del histograma. Para considerar que la dispersión no es demasiada, el ancho del histograma debe caber de forma holgada en las especificaciones. En la figura 2.2 incisos a) y b) hay poca variación, mientras que en los incisos c) y d) ocurre lo contrario. 

4. Analizar la forma del histograma. Al observar un histograma considerar que la forma de distribución de campana es la que más se da en salidas de proceso y tiene características similares a la distribución normal (véase capítulo 3 y figura 2.2 a), b), c) y d). Es frecuente que cuando la distribución no es de este tipo sea la señal de un hecho importante que está ocurriendo en el proceso y que tiene un efecto negativo en la calidad. Por ello, es necesario revisar si la forma del histograma es muy diferente a la de campana. Algunas de las formas típicas que no coinciden con una distribución de campana, son las siguientes:

Distribución sesgada. En la figura 2.2e) se aprecia un histograma con una distribución sesgada a la derecha, ya que la cola derecha es más grande que la izquierda. En términos generales, un sesgo en una variable de salida refleja el desplazamiento paulatino de un proceso debido a desgastes o desajustes; asimismo, puede indicar procedimientos viciados en la forma de obtener las mediciones o un desempeño especial del proceso, en el sentido que aparecen algunos valores inusualmente altos de un solo lado de la distribución (izquierdo o derecho). Cabe aclarar que existen características de calidad que, por su naturaleza, tienen sesgo, como son tiempos de vida y resistencias a la fatiga.
Una forma de decidir si una distribución sesgada indica una situación especial a corregir, consiste en comparar ésta con la distribución de la misma característica o de variables similares para datos obtenidos en otro periodo de tiempo. La recomendación general es que ante la sospecha de que hay algo especial atrás de una distribución con sesgo se debe investigar si efectivamente es así.

Distribución multimodal. En la figura 2.2f ) se aprecia un histograma en el que claramente se notan dos modas o picos que muestran dos tendencias centrales diferentes. Este tipo de distribuciones con dos o más modas reflejan la presencia de dos o más realidades o condiciones diferentes. Algunas
situaciones que originan una distribución multimodal son:

a) Diferencias importantes de lote a lote en la materia prima que utiliza el proceso, debido a que proceden de diferentes proveedores o al exceso de variación de un mismo proveedor.
b) Cuando en el proceso intervienen varios operadores, con criterios o métodos de trabajo diferentes.
c) Las mediciones de la variable de salida que están representadas en el histograma fueron realizadas por personas o instrumentos diferentes; por lo tanto, se utilizaron distintos criterios o instrumentos mal calibrados.
d) El proceso, cuando generó los resultados de la distribución multimodal, fue operando en condiciones diferentes (una condición para cada moda).
e) En general, una distribución multimodal se debe a la presencia de fuentes de variación bien definidas que deben ser identificadas y corregidas, a fin de mejorar la capacidad del proceso correspondiente. Una forma de identificarlas es analizar por separado los datos en función de diferentes lotes de materia prima, operadores, instrumentos de medición, turnos o días de producción, etc., para así comparar los resultados y ver si hay diferencias significativas.

Distribución muy plana. En la figura 2.2g) se aprecia un histograma que muestra una distribución muy chata o plana y que está lejos de tener forma de campana. Las situaciones que pueden causar esto son las mismas que las de la distribución multimodal, pero con la particularidad de que las diferencias son menos fuertes; sin embargo, afectan de manera seria la capacidad de un proceso. Por lo tanto, también deben ser identificadas y corregidas mediante la estrategia recomendada antes.

Distribución multimodal. Forma de la distribución de unos datos en la que sea aprecian claramente dos o más modas (picos). Por lo general, cada moda refl eja una condición o realidad diferente.

Distribución sesgada. Forma asimétrica de la distribución de unos datos o una variable, donde la cola de un lado de la distribución es más larga que la del otro lado.

Distribución con acantilados. En el histograma de la figura 2.2h) se observa un acantilado derecho, que es una suspensión o corte muy brusco en la caída de la distribución. Algunas de las posibles causas que motivan la presencia de un acantilado son: un lote de artículos previamente inspeccionados al 100% donde se excluyó a los artículos que no cumplen con alguna medida mínima o que exceden una medida máxima (como en la figura), problemas con el equipo de medición, errores en la medición o inspección (cuando el inspector está predispuesto a no rechazar un artículo y observa que éste casi cumplía con los requisitos, registra la medida mínima aceptable). En general, un
acantilado es anormal y, por lo tanto, se debe buscar la causa del mismo.

5. Datos raros o atípicos. Una pequeña cantidad de mediciones muy extremas o atípicas son identificadas con facilidad mediante un histograma, debido a que aparecen una o más barras pequeñas bastante separadas o aisladas del resto. Un dato raro refleja una situación especial que se debe investigar, y entre las posibles causas están las siguientes:

• El dato es incorrecto, ya sea por error de medición, de registro o de “dedo” cuando fue introducido a la computadora.
• La medición fue realizada sobre un artículo o individuo que no forma parte del proceso o población a la que pertenece el resto.
• Si han sido descartadas las dos situaciones anteriores, entonces la medición se debe a un evento raro o especial. Es decir, cuando se hizo la medición, en el proceso estaba ocurriendo una situación especial o fuera de lo común (en el capítulo 7 se tratan con mayor detalle las situaciones especiales).

6. Estratificar. En ocasiones, en el histograma no se observa ninguna forma particular pero existe mucha variación y, en consecuencia, la capacidad del proceso es baja. Cuando los datos proceden de distintas máquinas, proveedores, lotes, turnos u operadores, puede encontrarse información valiosa si se hace un histograma por cada fuente (estratificar), con lo que se podrá determinar cuál es la máquina o el proveedor más problemático.
De acuerdo con los puntos anteriores, es recomendable que siempre que se realice un estudio de la salida de un proceso se utilice el histograma y éste se interprete a detalle. De esa manera será posible detectar situaciones problemáticas y posibles soluciones para las mismas. Además, será una forma concreta de que los datos y mediciones sobre los procesos, que en ocasiones abundan, se conviertan
en información útil para la toma de decisiones y acciones. Será necesario tener la precaución de que el histograma se haya obtenido de manera correcta, sobre todo en lo referente al número de clases y a la cantidad de datos.

Limitaciones del histograma

Aunque el histograma es una herramienta fundamental para analizar el desempeño de un proceso, tiene algunas limitaciones:

1. No considera el tiempo en el que se obtuvieron los datos; por lo tanto, con el histograma es difícil detectar tendencias que ocurren a través del tiempo. Por tal razón, no ayuda a estudiar la estabilidad del proceso en el tiempo, lo cual se analiza por medio de cartas de control.
2. No es la técnica más apropiada para comparar de manera práctica varios procesos o grupos de datos; en esos casos, el diagrama de caja o la gráfica de medias son más apropiados.
3. La cantidad de clases o barras influye en la forma del histograma, por lo que una buena práctica es que a partir de la cantidad de clases que de manera inicial sugiere un software, se analice el histograma con un número de clases ligeramente menor y un poco más de clases, a fin de verificar si se observa algo diferente.

No hay comentarios:

Publicar un comentario